

GOING NUTS:

Developing peanut shell fuel briquettes for household use in Malawi

Tammy Harrell

Nancy Diaz

Stephen Jayanathan

Sean Sevilla

Jason Burwen

CE 290E | UC Berkeley | May 2010

In this presentation...

- 1. Background
- 2. Goals
- 3. Briquette Design
- 4. Combustion
- 5. Emissions
- 6. Implementation
- 7. Recommendations

Background on Malawi

8 million people (>70% below poverty line)

Highly agrarian, peanut farming common

Biomass more than 90% of household fuel use

- Fuel wood
- Charcoal

Multiple stove types used

Problems identified

- Deforestation, management of dwindling resources
- Health problems from inhalation of smoke

Full Belly Project

Mission: "to design and distribute income-generating agricultural devices to improve life in developing countries."

Developed universal nut sheller

Can shells be used?

Overarching Goal

- Design and make a fuel briquette that is
 - easy-to-make,
 - affordable,
 - that uses local materials, and
 - burns well with
 - same or lower emissions than comparable biomass feedstocks

Semester Deliverables

- Briquette design
 - Process
 - Briquette recipe
- Qualitative combustion test
- Quantitative emissions test
- Project viability documents
 - Implementation model
 - Rough market analysis
 - Stakeholder analysis

Timeline

	0	Name	Duration	Start	Finish
1	100	Assign team roles	0 days	1/29/10 8:00 AM	1/29/10 8:00 AM
5	85	Contact mentors	3 days	1/30/10 8:00 AM	2/3/10 5:00 PM
10	G.	Get/make press	7 days	2/5/10 8:00 AM	2/15/10 5:00 PM
13	G	Establish storage space		2/5/10 8:00 AM	2/5/10 8:00 AM
15	B	Submit initial budget	0 days	2/11/10 8:00 AM	2/11/10 8:00 AM
6	D	Initial Class Report	0 days	2/11/10 11:00 AM	2/11/10 11:00 AM
2	a	LBNL Saftey Training	1 day	2/12/10 8:00 AM	2/12/10 5:00 PM
3	27	Get peanuts/hulls	0 days	2/12/10 8:00 AM	2/12/10 8:00 AM
9	G	Get/make binding ag	1 day	2/12/10 8:00 AM	2/12/10 5:00 PM
4	R 5	Get peanut hulling ma	0 days	2/12/10 5:00 PM	2/12/10 5:00 PM
11	-8	Make first briquettes	1 day	2/16/10 8:00 AM	2/16/10 5:00 PM
12	200	Emissions test briquet	1 day	2/18/10 8:00 AM	2/18/10 5:00 PM
14		Test different binders	42 days	2/19/10 8:00 AM	4/19/10 5:00 PM
7	00	Midterm Presentation	0 days	3/30/10 11:00 AM	3/30/10 11:00 AM
4	07	Midterm Report		4/2/10 4:00 PM	4/2/10 4:00 PM
16	C.	Final presentation	0 days?	5/13/10 E:00 AM	5/13/10 8:00 AM
18	C .	Delivery of team binder	0 days?	5/14/10 8:00 AM	5/14/10 8:00 AM
17	B	Final paper	0 days?	5/14/10 5:00 PM	5/14/10 5:00 PM

Timeline

The Briquetting Process

Briquette Design: Press & Shape

Briquette Shape

Doughnut Pressed Puck Extruded

- Corn starch
- Tapioca
 - Flour
 - Pellets
- Plantain
- Yucca

Binder: In-Class Feedback

Binder: In-Class Feedback

Briquette Design: Grain Size Distribution

Small particles...

- reduce amount of binder required
- increase density
- increase combustion efficiency
- Fine particles may reduce combustion efficiency

Grain size (mm)	Weight %
Larger than 9.51	6.47
4.76 - 9.51	28.6
2.38 - 4.76	32.5
2.00 - 2.38	5.40
1.19 - 2.00	11.2
0.840 - 1.19	4.26
Less than 0.841	11.5

Qualitative Evaluation

Puck
Difficult to start
Smolders

DonutEasiest to set fire
Positioning is not as critical

Barriers to adoption

- Binder is a food source
- Time intensive process
- Must be very attentive to stove when using briquettes (rapid feed)
- Drying time

Emissions Test

- Tests Conducted at LBNL Stove Emissions Testing Facility
- Test Procedure
 - Darfur Stove
 - Small Starter Fire
 - Lidded Pot with 2.5 I of H₂O
 - Maintain 15 min Boil

Emissions Test: Results

Average emissions to sustain 2.5L H₂O at 100°C for 15 minutes in a Darfur Stove

-	Wood (representative avg)	Peanut Briquettes	% Change
CO ₂ (PPM) ¹	3300	5000	50%
CO (PPM)	130	220	69%
PM 2.5 (PPM)	7.9	22	<u>180%</u>
Black Carbon (µg/m3)	98	260	<u>160%</u>
Burn Rate (g/min)	6.0	8.4	36%

^{1.} Emissions above background

Implementation Dilemma

Theoretical max of ~50 days' worth of fuel for average smallholder

Need a lot more shells...

"Collectively, if people are willing to share money with each other from other families, then they can join together and make a business, but it is not extremely common. It's more common that one person/family, who is more well off, will hire piece workers to help."

--Amanda Shing, MIT D-Lab (3/22/10)

Approach

- Individual/family able to do largescale processing
 - Need many hectares' yield of peanut shells
 - Standardized quality improves marketability
 - Avoids uncertainty of community cohesion
- Sell UNS, briquette press, and training all together
 - With marketing techniques!

Marketability

- Market viability questionable
 - Price would be 1.3x equivalent amount of charcoal, using minimum wage labor
 - To achieve competitive price (1/2 charcoal), labor costs as low as 3-4 MK (2¢) per hour
- Margins likely to be quite low
 - Payback not rapid enough?
- Based on crude assumptions
 - And lack of feedback from key stakeholders

In a nutshell...

- Barriers to adoption need to be addressed
- Not better than wood with respect to emissions
 - Potentially worse!
- Not a market-viable project currently
- Must address general challenges of agri-waste fuels
 - Displacing wood and improving health may run contrary

Future Directions

- Calorimetery of peanut shells
 - Are they actually special?
- Improve general agricultural waste processing
 - Optimal recipes
 - Business plan
- Consumer testing of briquettes

Thank you

Counsel

- Tim Anderson
- Amanda Shing
- Jock Brandis
- Thomas Kirchstetter
- Odelle Hadley
- Chelsea Preble

Documentation

Kathryn Lee

Motivation

- Susan Addy
- Johanna Mathieu
- Ashok Gadgil

Contact info

Sean Sevilla - sean.sevilla@gmail.com

Nancy Diaz - ndiaz08@gmail.com

Tammy Harrell - tjharrell@berkeley.edu

Jason Burwen - jburwen@berkeley.edu

Stephen Jayanathan - jayanathans@gmail.com

References

ASTM Standard C136, 2006, "Standard Test Method for Sieve Analysis of Fine and Course Aggregates", ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/C0136-06.

Singh, B.K., et al, Thermal Decomposition Kinetics of Peanut Shell. *Nature and Science*, 2009; 7(7), ISSN 1545-0740.

Zana, Z.C.N., Baseline Survey on the Biomass Energy Situation in the Border Zone Area Mhuju, Rumphi District, Northern Region, Malawi, 1998. Pindai Appropriate Technology Specialists. http://www.probec.org/displaysection.php?czacc=&zSelectedSectionID=sec1192918473, viewed on 2 February. 2010.

Kammen, D.M., Bailis, R., Kituyi, E., Ezzati, M., Greenhouse Gas and Particulate Emissions and Impacts from Cooking Technologies in Africa, 2003. American Geophysical Union, Fall Meeting. http://adsabs.harvard.edu/abs/2003AGUFM.U31A..03K%3E, viewed 31 March 2010.

Legacy Foundation, "Fuel Briquettes: A Trainer's Manual," 2003.

Zeller, M., Diagne, A., Mataya, C. Market access by smallholder farmers in Malawi: Implications for technology adoption, agricultural productivity, and crop income. Food Consumption and Nutrition Division Discussion Paper No. 35. International Food Policy Research Institute, Washington, 1997.